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Some inequalities for Heinz operator mean

SILVESTRU SEVER DRAGOMIR

ABSTRACT. In this paper we obtain some new inequalities for Heinz
operator mean.

1. INTRODUCTION

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H,(-,-)). We use the following notations for operators and
v e [0,1]

AV, B :=(1-v)A+vB,
the weighted operator arithmetic mean, and
Aty B = AV (ATVRBATI) A1,
the weighted operator geometric mean. When v = % we write AVB and

Al B for brevity, respectively.
Define the Heinz operator mean by

1
H,(A,B):= 3 (A, B + A1, B).
The following interpolatory inequality is obvious
(1) A$B < H,(A,B) < AVB

for any v € [0,1].

The famous Young inequality for scalars says that if a, b > 0 and v € [0, 1],
then
(2) a7 < (1—v)a+vb

with equality if and only if @ = b. The inequality (2) is also called v-weighted
arithmetic-geometric mean inequality.
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72 SOME INEQUALITIES FOR HEINZ OPERATOR MEAN

We recall that Specht’s ratio is defined by [11]

B e (0,1) U (1,00),
3) sty =] 07

lith=1.

It is well known that lim,_,1 S (k) =1, S(h) =S (3) > 1 for h >0, h # 1.
The function is decreasing on (0,1) and increasing on (1, 00) .

The following inequality provides a refinement and a multiplicative reverse
for Young’s inequality:

(4) S ((%)T) al Y < (I-v)a+uvb< S (%) al v,

where a, b >0, v € [0,1], r = min {1 — v, v}.

The second inequality in (4) is due to Tominaga [12] while the first one is
due to Furuichi [4].

The operator version is as follows [4], [12] : For two positive operators A,
B and positive real numbers m, m’, M, M’ satisfying either of the following
conditions:

1) 0<ml<A<m'I<MI<B<MI,

) 0<ml<B<mI<MI<A<MI
we have

(5) S((W')") AtvB < AV, B < S (h) At B,

where h =4 b/ .= M and v € [0,1].
We observe that, if we write the inequality (5) for 1 — v and add the
obtained inequalities, then we get by division with 2 that
S((W)")H, (A, B) < AVB < S (h)H, (A, B)
that is equivalent to

(6) S™'(h)AVB < H, (A,B) < S ((W)") AVB,

where h =24 p/ = %,/ and v € [0,1].

We consider the Kantorovich’s constant defined by
(h+1)°
4h
The function K is decreasing on (0, 1) and increasing on [1,00), K (h) > 1

for any h > 0 and K (h) = K () for any h > 0.
The following multiplicative refinement and reverse of Young inequality
in terms of Kantorovich’s constant holds:

(8) K" (%) a7 < (1-v)a+vb< K (%) al=vy,

where a,b >0, v € [0,1], r = min {1 — v,v} and R = max{l —v,v}.

(7) K (h) := , h>0.
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The first inequality in (8) was obtained by Zou et al. in [13] while the
second by Liao et al. [10].

The operator version is as follows [13], [10]: For two positive operators A,
B and positive real numbers m, m’, M, M’ satisfying either of the conditions
(i) or (ii) above, we have

(9) K" (W) A4,B < AV, B < K (h) At, B,

where h:= X4 p/ = M.y e[0,1] r =min{l —v,v} and R = max {1 — v, v} .

We observe that, ?fbl we write the inequality (9) for 1 — v and add the
obtained inequalities, then we get by division with 2 that
K" (W) H, (A,B) < AVB < K (h) H, (A, B)
that is equivalent to
(10) K f®(h)AVB<H,(A,B) <K (K)AVB,
where h = /= %,/ and v € [0,1].

The inequalities (10) have been obtained in [10] where other bounds in
terms of the weighted operator harmonic mean

ALB:=[1-v)A '+ I/B_l]_l

were also given.
Motivated by the above results, we establish in this paper some new in-
equalities for the Heinz mean. Related inequalities are also provided.

2. UPPER AND LOWER BOUNDS FOR HEINZ MEAN

We start with the following result that provides a generalization for the
inequalities (5) and (9):

Theorem 1. Assume that A, B are positive invertible operators and the
constants M > m > 0 are such that

(11) mA<B<MA

in the operator order. Letv € [0,1], r = min {1 — v,v} and R = max {1 —v,v}.
Then we have the inequalities

(12) or (m, M) A8,B < AV,B < ®(m,M) A4, B,
where

S(m) if M <1,
(13) O (m, M) :=¢ max{S(m),S(M)} ifm<1<M, ,

S(M) if 1 <m,
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S(M?) if M <1,
pr(m,M):=q 1ifm<1<M,

S(m") if 1 <m,

and
(14) Wy (m, M) A, B < AV, B < Uy (m, M) A, B,
where
K®(m) if M < 1,
(15) Vg (m, M) =< max{K®(m), Kt (M)} ifm<1<M, ,

KE (M) if 1 <m,

\

(K" (M) if M <1,

Y (m,M):=¢ 1ifm<1<M,

K" (m) if 1 <m.

Proof. From the inequality (4) we have
(16)
z/ min S(z") < S (") 2" <(1—-v)+ve<S(z)z" <z¥ max S(x)
x€[m,M] z€[m,M]
where z € [m, M], v € [0,1], r = min{1 — v, v}.
Since, by the properties of Specht’s ratio .S, we have

S(m)if M <1,
n[la)]cw]S(x): max{S(m),S(M)} fm<1<M, =& (m,M)
re|m,
S(M) if 1 <m,
and
S(M™) it M <1,
min S(z")=< 1ifm<1<M, =¢ (m M),
z€[m,M]

S(m") if 1 <m,
then by (16) we have
(17) z’or (m, M) < (1—v)+ve <z"®(m, M)
for any = € [m, M] and v € [0,1].
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Using the functional calculus for the operator X with mI < X < M1 we
have from (17) that

(18) XYor(m,M)<(1—-v)I+vX < X"®(m,M)

for any v € [0, 1].

If the condition (11) holds true, then by multiplying in both sides with
A=12 we get mI < A~1/2BA~Y/2 < MT and by taking X = A~1/2BA~1/2
in (18) we get

(19) (A—1/2BA—1/2)” or (m, M) < (1 — )1 +vA~Y2BAY?
< (A*l/QBA*W)” ® (m, M)

Now, if we multiply (19) in both sides with A'/2 we get the desired result
(12).
The second part follows in a similar way by utilizing the inequality

¥ min K" (z) < K" (x)2" <(1—-v)+vx
z€[m,M]

< KB(z)z¥ <2¥ max KT (zx),
x€[m,M]

which follows from (8). The details are omitted. O
Remark 1. If () 0 <mI < A<m'I < M'I <B < MI, h=2 and
h' = %,/ then we have

/
Ag%A:h’AnghA:%A,
m

3

and by (12) we get
(20) S((W)") At,B < AV,B < S (h) A4, B.
If (i) 0<mI <B<m'I<M1I<A<MI, then we have

1 1
—A< < —AK<L
FASB< A<A

and by (12) we get

1\" 1
S <<h,> > A4, B< AV,B< S <h> A4, B,

which is equivalent to (20).
If we use the inequality (14) for the operators A and B that satisfy either
of the conditions (i) or (ii), then we recapture (9).

Remark 2. From (12) we get for v = 3 that
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S(MT) A§B if M < 1,
21) { AfBifm<1<M, <AVB

S(m") AtB if 1 < m,

S(m)AtBif M < 1,
< ¢ max{S(m),S (M)} AfBif m <1< M,

S (M) A$B if 1 < m.

The following result contains two upper and lower bounds for the Heinz
operator mean in terms of the operator arithmetic mean AVEB :

Corollary 1. With the assumptions of Theorem 1 we have the following
upper and lower bounds for the Heinz operator mean

(22) &' (m,M)AVB < H, (A,B) < ¢! (m, M) AVB
and
(23) Lt (m, M) AVB < H, (A, B) < ¢, (m, M) AVB.

Remark 3. If the operators A and B satisfy either of the conditions (i) or
(ii) from Remark 1, then we have the inequality

(24) S~ (h)AVB < H,(A,B) < S7'((K)") AVB
and
(25) K ®(h)AVB <H,(A,B)<K " (K)AVB.

The following result provides an upper and lower bound for the Heinz
mean in terms of the operator geometric mean AfB :

Theorem 2. With the assumptions of Theorem 1 we have
(26) w(m,M)A$B < H, (A,B) < Q(m, M) AfB,
where

S (mP2v=1 if M < 1,

(27)  Q(m,M):= ¢ max{S (m|2”_1|) S (M‘Q”_l‘)} ifm<1<M,

S (M= if 1 < m,
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7

and

( S(M!”*%\) if M <1,

(28) wm,M):=<¢ 1ifm<1<M,

S (m‘”_%D if 1 <m,

where v € [0, 1].

Proof. From the inequality (4) we have for v = %

(29) S(ﬁ)@gcgdgs(fi)x/?d,

for any ¢, d > 0.
If we take in (29) ¢ = a'~"b” and d = a”b' ™" then we get

1, I—Vbu l/bl—l/ 1—2u
a)  s((5))vas T s ((5)) vab
for any a, b > 0 for any v € [0, 1].
This is an inequality of interest in itself.
If we take in (30) @ = = and b = 1, then we get

xl—l/ + ¥

(31) (v ) Ve Tt <8 (01 Va,

for any x > 0.
Now, if x € [m, M] C (0,00) then by (31) we have

1—v v
(32) Nz I{lil}\/[]S <x%*”> < ot <Vz max S(z'7%),
xre|m,

for any x € [m, M].
Ifve (0, %) , then

max S (mlf?l’) = { max {S (ml_z”) S (Ml_z”)} itm<1< M,

z€[m,M]
S(M*™2) if 1 < m,

and
1—2v

S(M ; )ifM<1,

min S(x%_”): lifm <1< M,
z€[m,M]

S(m%> if 1 <m.
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Ifve (%, 1), then

1—2v _ 2v—1
TR 5 T
S (m* 1) if M < 1,
= max {S (mQV—l) ;S (Mz”_l)} ifm<1< M,
S (M1 if 1 < m,
and
S (M%;l) i M <1,
min S(w%*”>: min S(ac”*%>: 1lifm<1< M,
x€[m,M] z€[m,M]
S (m%> if 1 <m.
Then by (32) we have
xl*l/ +xV
(33) w (m, M) vz < Z T < (m, M)

2
for any x € [m, M].
If X is an operator with mI < X < M1, then by (33) we have

Xl—l/ + XV
2

(34) w (m, M) X2 < < Q(m, M) X2,

If the condition (11) holds true, then by multiplying in both sides with A~1/2
we get mI < A=Y2BA~1/2 < MI and by taking X = A~/2BA~1/2 in (34)
we get

(35) w (m, M) (A*1/23A71/2) 1/2
< % [<A1/2BA1/2>1_V N (Al/QBAl/Q)V]

1/2
< Q (m, M) (A*I/zBA’l/Q) ?

Now, if we multiply (35) in both sides with A'/2? we get the desired result
(26).

Corollary 2. For two positive operators A, B and positive real numbers m,

m/, M, M’ satisfying either of the following conditions:
(i))0<ml<A<ml<MI<B<MI,
(ii))0<ml <B<m'l<MI<A<MI,

we have for h = % and h' = %,/ that

(36) S ((h’)'”‘%’) AtB < H, (A, B) < § (11 4B,
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where v € [0,1].

3. RELATED RESULTS

We call Heron means, the means defined by

F, (a,b) := (1fa)\/cﬁ+aa—2|_b,

where a, b > 0 and « € [0,1].
In [1], Bhatia obtained the following interesting inequality between the
Heinz and Heron means

(37) Hy (a,b) < Fi, 42 (a,b)

where a, b > 0 and a € [0,1].
This inequality can be written as

(38) <0§>Hy<a,b>—@g@u—l)?(“;b—@),

where a, b > 0 and a € [0,1].
Making use of a similar argument to the one in the proof of Theorem 1
we can state the following result as well:

Theorem 3. Assume that A, B are positive invertible operators and v €

[0,1]. Then
(39) (0<)H, (A, B) — AtB < (2v —1)* (AVB — A#B).

Moreover, if there exists the constants M > m > 0 such that the condition
(11) is true, then we have the simpler upper bound

(40) (0 <) H, (A, B) — AtB < % (2v —1)2 (\/M - \/ﬁ)

2

Kittanech and Manasrah [5], [6] provided a refinement and an additive
reverse for Young inequality as follows:

2 2
(41) r(\f—\/l;> S(l—u)a—i—ub—al_yb”SR(\f—\/l;)
where a,b >0, v € [0,1], r = min {1 — v,v} and R = max{l —v,v}.
If we replace in (41) v with 1 —v, add the obtained inequalities and divide
by 2, then we get

(42) r(f—\/g)2§a;_b—H,,(a,b)gR(f—\/B)

2
where a,b > 0, v € [0, 1].
We also have by (42) that, see [7] and [8]:

Theorem 4. Assume that A, B are positive invertible operators and v €

[0,1]. Then
(43) 29 (AVB - AiB) < H, (A, B) — AiB < 2R(AVB — AtB).
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Since (2v —1)? < 2max {1 — v, v} for any v € [0,1], it follows that the
inequality (39) is better than the right side of (43).
In [2], by using the equality

4
a+b 2ab (\f - \/B)
44 —— -——2>0
(44) 2 + at+b 2Vab = 2(a+b) —
for a, b > 0, the authors obtained the interesting inequality

(45) % (A (a,b) + H (a,)] > G (a,b),

where A (a,b) is the arithmetic mean, H (a,b) is the harmonic mean and
G (a,b) is the geometric mean of positive numbers a, b.

Now, if we replace a by a'="b” and b by a”b'~" in (45) then we get the
following result for Heinz means

1
(46) 5 [Hy (@,0) + H' (a7 071)] > G (a,0)
for any for a, b > 0 and v € [0,1].
Since

1 1 1
< <
2max{a,b} ~ a+b = 2min{a,b}’
then by (44) we have

_\/» 4 _ \/» 4
(47) 1% < L IAGD) + H (@ h)] - Gab) < (I\;{ag ,
for any for a, b > O.2
Since (vVa—vb) =2[A(a,b) - G (a,b)],
(va-vi)  (va-ve) (e {vavh})’
max {a, b} (max{ﬁ, ﬁ})z max{\/&, \/B}

and
(va-vB)" _ (max{va.vs)
min {a,b} min{\/&,\/l;}_

then the inequality (47) can be written as

min f\[}
(48) [A(a,b) = G (a,b)]
1
<3l

max\f\[}

(a,b) + H (a,b)] — G (a,b)
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max {\/&, \/Z;}
min {\/a, \/B}

< -1 [A(CL?b)_G(a?b)]a

N

for any for a, b > 0.
If a, b € [m, M] C (0,00), then by (48) we get

(49)
2
;<1 ]”\D 4 (a,b) — G (a,)] g%[A(a,b)+H(a,b)]fG(a,b)
2
S% %—1 [A (a,b) — G (a,b)].

Similar results may be stated for the corresponding operator means, how-
ever the details are nor presented here.
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